Data Science & Machine Learning - Developer Certification
The Data Science & Machine Learning Developer Certification program provides a comprehensive set of knowledge and skills in data science, machine learning, and deep learning.
Statistics Module Slides - presentation
Focus and Objectives
READING: Intro to Machine Learning for Managers (Read Pages 1-12)
READING: Jeff Dean Rice Talk - State of Artificial Intelligence (Read entire document) (Dated but useful)
Module 1 - SLIDES - Part 1
Module 1 - SLIDES - Part 2
Module 1 - SLIDES - Part 3
Module 1 - SLIDES - Part 4
Module 1 - SLIDES - Part 5
Module 1 - SLIDES - Part 6
Module 1 - SLIDES - Part 7
Lesson 1: Introduction to Machine Learning
Lesson 1: Lab 1
Lesson 2-1: Lab-2a
Lesson 2-1: Pandas
Lesson 2-1: Exploring Pandas
Lesson 2-2: Lab-2b
Lesson 2-2: Lab 2c
Lesson 2-3: Visualization
Lesson 2-4: Lab-2d
Lesson 2-4: Visualization-Stats
Lesson 2-4: Lab 3a
Lesson 3-1: Sklearn
Lesson 3-2: Lab-3b
Lesson 3-2: Linear Regression
Lesson 3-3: Multivariate Linear Regression
Lesson 3-4: Logistic Regression (updated audio)
Module 2 - Focus and Objectives
READING: ISLR (Read Chapter 8 - Trees)
READING: ISLR (Read Chapter 9 - Support Vector Machine)
Lesson 1a: Classification (Support Vector Machines)
Lesson 1b: Classification (Naive Bayes)
Lesson 2-1: Lab1a and 1b
Focus and Objectives
READING: ISLR (Read Chapter 8 - Trees)
READING: ISLR (Read Chapter 9 - Support Vector Machine)
READING: ISLR (Read Chapter 10 - Unsupervised)
SLIDES - In pdf format (ALL SLIDES AVAILABLE HERE)
Module 3 - SLIDES - Part 1
Module 3 - SLIDES - Part 2
Module 3 - SLIDES - Part 3
Module 3 - SLIDES - Part 4
Module 3 - SLIDES - Part 5
Module 3 - SLIDES - Part 6
Lesson 1a: Classification (Support Vector Machines)
Lesson 1b: Classification (Naive Bayes)
Lesson 2-1: Lab1a and 1b
Lesson 2a: Decision Trees
Lesson 2b: Random Forests
Lesson 2-1: Lab-2a and 2b
Lesson 2-1: Lab-2c
Lesson 3a: Clustering
Lesson 3b: Principal Component Analysis
Lesson 2-1: Lab-3a and 3b
Lesson 3-1: Lab-3c (Principal Component Analysis)
Focus and Objectives
READING: Introduction to Deep Learning
READING: Introduction to Linear Algebra
READING: Introduction to Statistics
SLIDES - In pdf format (ALL SLIDES AVAILABLE HERE)
Module 4 - SLIDES - Part 1
Module 4 - SLIDES - Part 2
Module 4 - SLIDES - Part 3
Module 4 - SLIDES - Part 4
Module 4 - SLIDES - Part 5
Module 4 - SLIDES - Part 6
Module 4 - SLIDES - Part 7
Module 4 - SLIDES - Part 8
Module 4 - SLIDES - Part 9
Module 4 - SLIDES - Part 10
Lesson 1a: Deep Learning - Intro
Lesson 1a: Lab 1a - Tensorflow Playground
Lesson 1b: TensorFlow - Intro
Lesson 1b: Lab 1b - Tensorflow Sessions
Lesson 1c: TensorFlow- Low Level API
Lesson 2a: TensorFlow - Linear Models
Lesson 2a: Lab 2a and 2b
Lesson 2b: TensorFlow - High-Level API
Lesson 2b: Lab 2c and 2d
Lesson 3a: Lab 3a
Lesson 3a: Lab 3b and 3c
Lesson 3b: Lab 3d and 3e
Lesson 4: Multilayer Perceptron (MLP)
Focus and Objectives
READING: Place of Convolutional Neural Networks (CNN) and Deep Learning
READING: Parameter Sharing and CNN
READING: Understanding CNN
READING: A Brief History of CNNs in Image Segmentation
READING: CNN Architectures
SLIDES - In pdf format (ALL SLIDES AVAILABLE HERE)
Module 5 - SLIDES - Part 1
Lesson 1 - Convolutional Neural Networks
Lesson 2 - Convolutional Neural Networks, Extended
Lesson 3 - TensorBoard: Visualizing Learning