Course curriculum

    1. Statistics Module Slides - presentation

    1. Focus and Objectives

    2. READING: Intro to Machine Learning for Managers (Read Pages 1-12)

    3. READING: Jeff Dean Rice Talk - State of Artificial Intelligence (Read entire document) (Dated but useful)

    4. Module 1 - SLIDES - Part 1

    5. Module 1 - SLIDES - Part 2

    6. Module 1 - SLIDES - Part 3

    7. Module 1 - SLIDES - Part 4

    8. Module 1 - SLIDES - Part 5

    9. Module 1 - SLIDES - Part 6

    10. Module 1 - SLIDES - Part 7

    11. Lesson 1: Introduction to Machine Learning

    12. Lesson 1: Lab 1

    13. Lesson 2-1: Lab-2a

    14. Lesson 2-1: Pandas

    15. Lesson 2-1: Exploring Pandas

    16. Lesson 2-2: Lab-2b

    17. Lesson 2-2: Lab 2c

    18. Lesson 2-3: Visualization

    19. Lesson 2-4: Lab-2d

    20. Lesson 2-4: Visualization-Stats

    21. Lesson 2-4: Lab 3a

    22. Lesson 3-1: Sklearn

    23. Lesson 3-2: Lab-3b

    24. Lesson 3-2: Linear Regression

    25. Lesson 3-3: Multivariate Linear Regression

    26. Lesson 3-4: Logistic Regression (updated audio)

    1. Module 2 - Focus and Objectives

    2. READING: ISLR (Read Chapter 8 - Trees)

    3. READING: ISLR (Read Chapter 9 - Support Vector Machine)

    4. Lesson 1a: Classification (Support Vector Machines)

    5. Lesson 1b: Classification (Naive Bayes)

    6. Lesson 2-1: Lab1a and 1b

    1. Focus and Objectives

    2. READING: ISLR (Read Chapter 8 - Trees)

    3. READING: ISLR (Read Chapter 9 - Support Vector Machine)

    4. READING: ISLR (Read Chapter 10 - Unsupervised)

    5. SLIDES - In pdf format (ALL SLIDES AVAILABLE HERE)

    6. Module 3 - SLIDES - Part 1

    7. Module 3 - SLIDES - Part 2

    8. Module 3 - SLIDES - Part 3

    9. Module 3 - SLIDES - Part 4

    10. Module 3 - SLIDES - Part 5

    11. Module 3 - SLIDES - Part 6

    12. Lesson 1a: Classification (Support Vector Machines)

    13. Lesson 1b: Classification (Naive Bayes)

    14. Lesson 2-1: Lab1a and 1b

    15. Lesson 2a: Decision Trees

    16. Lesson 2b: Random Forests

    17. Lesson 2-1: Lab-2a and 2b

    18. Lesson 2-1: Lab-2c

    19. Lesson 3a: Clustering

    20. Lesson 3b: Principal Component Analysis

    21. Lesson 2-1: Lab-3a and 3b

    22. Lesson 3-1: Lab-3c (Principal Component Analysis)

    1. Focus and Objectives

    2. READING: Introduction to Deep Learning

    3. READING: Introduction to Linear Algebra

    4. READING: Introduction to Statistics

    5. SLIDES - In pdf format (ALL SLIDES AVAILABLE HERE)

    6. Module 4 - SLIDES - Part 1

    7. Module 4 - SLIDES - Part 2

    8. Module 4 - SLIDES - Part 3

    9. Module 4 - SLIDES - Part 4

    10. Module 4 - SLIDES - Part 5

    11. Module 4 - SLIDES - Part 6

    12. Module 4 - SLIDES - Part 7

    13. Module 4 - SLIDES - Part 8

    14. Module 4 - SLIDES - Part 9

    15. Module 4 - SLIDES - Part 10

    16. Lesson 1a: Deep Learning - Intro

    17. Lesson 1a: Lab 1a - Tensorflow Playground

    18. Lesson 1b: TensorFlow - Intro

    19. Lesson 1b: Lab 1b - Tensorflow Sessions

    20. Lesson 1c: TensorFlow- Low Level API

    21. Lesson 2a: TensorFlow - Linear Models

    22. Lesson 2a: Lab 2a and 2b

    23. Lesson 2b: TensorFlow - High-Level API

    24. Lesson 2b: Lab 2c and 2d

    25. Lesson 3a: Lab 3a

    26. Lesson 3a: Lab 3b and 3c

    27. Lesson 3b: Lab 3d and 3e

    28. Lesson 4: Multilayer Perceptron (MLP)

    1. Focus and Objectives

    2. READING: Place of Convolutional Neural Networks (CNN) and Deep Learning

    3. READING: Parameter Sharing and CNN

    4. READING: Understanding CNN

    5. READING: A Brief History of CNNs in Image Segmentation

    6. READING: CNN Architectures

    7. SLIDES - In pdf format (ALL SLIDES AVAILABLE HERE)

    8. Module 5 - SLIDES - Part 1

    9. Lesson 1 - Convolutional Neural Networks

    10. Lesson 2 - Convolutional Neural Networks, Extended

    11. Lesson 3 - TensorBoard: Visualizing Learning

About this course

  • $1.00 / year with 14 day free trial
  • 139 lessons
  • 24.5 hours of video content